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SI Methods
Image Preprocessing.Overview.Allavailable resting-state scanswere
preprocessed using bothAFNI (1) and FSL (www.fmrib.ox.ac.uk).
Specific commands can be found in the preprocessing scripts that
will be released at www.nitrc.org/projects/fcon_1000/ on pub-
lication of this paper. After the first five time points of every scan
were discarded, to remove possible T1 stabilization effects, the
data were corrected for motion by aligning each volume to the
mean image volume using Fourier interpolation in AFNI. Then
the data were spatially smoothed using a 6-mm FWHMGaussian
kernel.Mean-based intensity normalizationwas done by scaling all
volumes by the same factor (10,000).
Seed-based correlation analyses. The data were temporally filtered
using both a high-pass (Gaussian-weighted least squares straight-
line fitting, with σ = 100.0 s) and low-pass (Gaussian low-pass
temporal filtering, with a HWHM of 2.8 s) filter, followed by
linear detrending to remove any residual drift.
Independent component analysis. Temporal concatenation group analysis.
Consistent with common practice, temporal filtering for ICA
analyses was limited to high-pass filtering (Gaussian-weighted least
squares straight-line fitting, with σ = 100.0 s).
Dual regression.This step used the same preprocessed data as used
in the seed-based correlation analyses.
ALFF/fALFF. No temporal filtering was carried out, because the data
were examined in the frequency domain within select bands (2, 3).
Temporal despiking with a hyperbolic tangent squashing function
was performed, however, to limit extreme values. Linear trends
were then removed from the data.
Registration and normalization. After the skull was removed using
AFNI, registration of each individual’s high-resolution anatomic
image to a common stereotactic space [the Montreal Neurological
Institute’s 152-brain template (MNI152); 3mm isotropic voxel size]
was done using a 12–degrees of freedom linear affine trans-
formation (FLIRT) (4, 5). The resulting transformation was then
applied to each individual’s functional dataset. We did not further
optimize the normalization with a nonlinear algorithm, because of
concerns about imagequality and limited coverage in somedatasets.

Functional Connectivity: Seed-Based Correlation Analysis. Nuisance
signal regression. Consistent with common practice in the R-
fMRI literature, nuisance signals were removed from the data via
multiple regression before functional connectivity analyses were
performed. This step is designed to control for the effects of
physiological processes, such as fluctuations related tomotion and
cardiac and respiratory cycles. Specifically, each individual’s 4D
time series data were regressed on nine predictors: white matter
(WM), cerebrospinal fluid (CSF), the global signal, and six motion
parameters. The global signal regressor was generated by aver-
aging across the time series of all voxels in the brain. TheWM and
CSF covariates were generated by segmenting each individual’s
high-resolution structural image (using FAST in FSL). The re-
sulting segmented WM and CSF images were thresholded to
ensure 80% tissue type probability. These thresholdedmasks were
then applied to each individual’s time series, and a mean time
series was calculated by averaging across time series of all voxels
within each mask. The six motion parameters were calculated in
the motion-correction step during preprocessing. Movement in
each of the three cardinal directions (X, Y, and Z) and rotational
movement around three axes (pitch, yaw, and roll) were included
for each individual.
Seed selection. Six 7.5-mm-radius seed regions of interest (ROIs)
(containing 33 voxels) centered on the coordinates previously used

by Fox et al. (6) were created to examine functional connectivity
for each of six regions, three regions within the “task-positive”
network and three within the “default mode” network. The ROIs
within the task-positive network were located in the IPS (-25, -57,
46), the middle temporal region (MT+; -45, -69, -2), and the right
frontal eye field (FEF) region of the precentral sulcus (25, -13,
50). The default mode network seed ROIs were located in the left
lateral parietal cortex (LP; -45, -67, 36), medial prefrontal cortex
(MPF; -1, 47, -4), and PCC (-5, -49, 40).
Individual seed-based functional connectivity analysis. First, each indi-
vidual’s residual 4D time series data were spatially normalized by
applying the previously computed transformation to the MNI152
standard space. Then the time series for each seed was extracted
from these data. Time series were averaged across all voxels in
each seed’s ROI. For each individual dataset, the correlation
between the time series of the seed ROI and that of each voxel in
the brain was determined. This analysis was implemented using
3dfim+ (AFNI) to produce individual-level correlation maps of
all voxels that were positively or negatively correlated with the
seed’s time series. Finally, these individual-level correlation maps
were converted to Z-value maps using Fisher’s r-to-z trans-
formation.

Functional Connectivity: Independent Component Analysis. Overview.
Temporal-concatenation group ICA (TC-GICA) was used to
generate group-level components for the dataset (7) using ME-
LODIC (FSL). Given computational resource limitations (e.g., 32
GB of physical memory), as well as a number of centers with a
small number of time points due to repetition times >2.0 s, each
TC-GICA run was applied to a dataset consisting of 18 partic-
ipants/center from the 17 centers that collected a minimum of 165
functional volumes per scan. This approach also ensured that a
single center’s data would not drive the ICA components de-
tected. Consistent with recent work on low-dimensional ICA (8),
the number of components was fixed at 20. Given the potential for
such factors as initial random values and subject sampling to affect
ICA results, 25 TC-GICA analyses were performed, each using a
unique resampling from each of the 17 centers. A meta-ICA
analysis was then carried out across the 25 runs to extract the 20
spatially independent components consistently identified across
the 25 runs. An alternative hierarchical clustering approach based
on ICASSO (9) is described below. The two approaches yielded
similar results. Dual regression (10, 11) was then carried out using
the 20 resulting components as templates, to produce individual
participant maps for each of the 20 components.
TC-GICA.Specifically, TC-GICA comprised five fundamental steps:

1. Each individual’s preprocessed data were first truncated to
the same number of time points (i.e., 165 EPI volumes).

2. A bootstrapping dataset was generated by randomly choos-
ing 18 individual datasets per center, resulting in 306 indi-
vidual functional datasets.

3. All 306 individual functional datasets were spatially aver-
aged in MNI152 standard space and then used to estimate
the mean covariance matrix.

4. The number of components was set at 20, and all individual
functional data were projected into a subspace spanned by
the first 20 eigenvectors of the mean covariance matrix,
resulting in reduced individual fMRI data (in a common
subspace).
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5. All 306 reduced individual datasets were temporally con-
catenated, reduced via principal component analysis to 20
dimensions, and fed into the probabilistic ICA algorithm
with a random initial value (12).

This procedure produced 20 group-level components for each
TC-GICA run. Finally, 500 (20 × 25) group-level components
were generated from the 25 TC-GICA runs.
Generation of component templates for dual regression (meta-ICA). To
provide more accurate and robust ICA component templates, we
carried out another low-dimensional (20 components) TC-GICA.
Here we concatenated the 500 components produced by the 25
TC-GICA runs as the input data of a single-session ICA in
MELODIC. The resultant maps were used as final component
templates for the dual regression procedure. Of note, this method
was selected as the primary approach over the alternative
approach described because it guarantees the spatial independ-
ence of the 20 components, whereas the alternative approach
does not.
Generation of component templates for dual regression model (alternative
approach).To emphasize the robustness of the findings of themeta-
ICA, here we describe an alternative approach that yields nearly
identical components to the meta-ICA. The findings of the two
approaches differed notably for only one of the 20 components,
for which the meta-ICA finding was more plausible. Given the
high degree of similarity between the two methods, we present
only the findings from the meta-ICA in the present work. In the
alternative approach, we used the hierarchical clustering algo-
rithm implemented in the ICASSO toolbox (9). ICASSO was
designed for validating the robustness of ICA with respect to
random initial values (of the ICA mixing matrix) and the ICA
cost function optimization search strategy. However, due to
limitations in computational resources (e.g., 32 GB of memory in
the present work), TC-GICA cannot be carried out on the full
datasets. Thus, we used the bootstrapping approach described
above with 25 ICA analyses, in which initial values and the
specific participants selected from each center varied from one
ICA analysis to the next. Here the 500 group-level components
(20 components per run × 25 runs) were sorted using hier-
archical clustering. The number of clusters (20) was selected to
match the number of components. The similarity between
components was measured by the combination of both spatial Rs
and temporal Rt correlations in Eq. (1) and the distance between
components as defined in Eq. (2) (13):

Sði; jÞ ¼ λ∗Rsði; jÞ þ ð1− λÞ∗Rtði; jÞ (1)

Dði; jÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− Sði; jÞ

p
; 1≤i; j≤500 (2)

Considering the spatial ICA, λ =0.8 was chosen in our clustering
procedure. Finally, the median value at each voxel for each of
the 20 clusters was calculated to determine the final component
templates for the dual regression procedure.
Individual component reconstruction via the dual regression model. To
reconstruct component maps for each participant, the recently
developed dual regression procedure (11, 14) was applied to each
of the 1,093 individual participants’ datasets. Specifically, in the
present work, dual regression consisted of two linear regressions
carried out independently for each of the 20 component maps
identified in temporal concatenation ICA. For each component
template, the first regression model used the template as a
spatial predictor for the participant’s 4D data, producing a set of
individual regression weights in the time domain (i.e., a time
series for each spatial map). Using this time series as a temporal
predictor for the 4D BOLD data, the second regression equation
estimated the individual regression weights in the spatial domain
(i.e., the participant-level individual spatial map). Both re-
gressions used the same data set used for the seed-based con-

nectivity approaches, that is, each participant’s 4D dataset after
removal of the nine nuisance covariates. Component time series
were demeaned in both regressions, but no variance normal-
ization was used. The dual regression procedure was carried out
for all 1,093 participants included across 24 centers, not just
those used for the generation of ICA-based templates. For each
component, these individual spatial maps were then used to
evaluate group-level statistics.
Amplitude of spontaneous low-frequency fluctuations. To examine the
potentially meaningful information contained within the ALFF,
two fast-Fourier transformation (FFT)-based indices, ALFF and
fALFF, were used to compute the amplitude of low-frequency
fluctuations in the frequencydomain (2, 3, 15).For each individual,
ALFF and fALFF were computed to identify those voxels with
significantly detectable low-frequency fluctuation amplitudes.
Specifically, at each voxel, ALFF is calculated as the sum of am-
plitudes within a specific low frequency range (0.01–0.1 Hz).
fALFF is the normalized ALFF, calculated by dividing the ALFF
value by the total sum of amplitudes across the entire frequency
range measured in a given time series. Voxelwise ALFF and
fALFF maps were calculated for each participant in native space,
and then transformed into the MNI152 standard brain space with
3-mm isotropic voxel size. Before statistical analyses, each in-
dividual ALFF or fALFF map was Z-transformed (i.e., by sub-
tracting the mean voxelwise ALFF or fALFF obtained for the
individual’s entire brain, and then dividing by the corresponding
SD) to improve its suitability for group-level parametric analyses.
The individual Z-transformed ALFF or fALFF maps were used in
subsequent group- and center-level analyses.
Unified group-level statistical model. For all three types of R-fMRI
measures (seed-based correlations, ICA, and ALFF/fALFF), a
unified general linear model frame was developed for center-level
statistical analyses. The unified statistical model is a one-way
ANOVA, treating centers as the between factor. F-contrasts were
used to measure the effect of centers. Overall group mean
contrasts across all centers were modeled as well. Specifically, a
one-factor 24-level ANOVA (factor: center; 1,093 participants),
with age and sex as covariates, was used to examine the effects of
age, sex, and center on the three R-fMRI measures. Multiple
comparisons were corrected at the cluster level using Gaussian
random field theory (min Z > 2.3; cluster significance: P < 0.05,
corrected).

SI Results
Center-Related Variability. The results presented in Fig. 1 show that
the effects ascribable to center can be either interpreted as negli-
gible, as indicated by the high between-center Kendall’sW (row 2),
or substantial, accounting for much of the variance (row 3). These
opposite interpretations are not mutually exclusive. The high be-
tween-center Kendall’sW indicates that the resting-state measures
(i.e., functional connectivity, fluctuation amplitude) obtained from
different centers have a high degree of similarity. Nevertheless,
systematic differences exist between centers, and these are easily
quantified by ANOVA. In Fig. S5 for each center, the mean func-
tional connectivity across 40 peak voxels derived from the center
effect map for the PCC seed is depicted. As the figure shows, there
are between-center differences in the height of the functional con-
nectivity values. Some centers have overall higher functional con-
nectivity values than others; these differences in the height of
functional connectivity values drive the significant between-center
effects. The variability in functional connectivity values could be
related to a number of factors (e.g., the specific scanner used,
scanner sequence, sample characteristics, specific instructions to
participants, degree of variability in participant wakefulness). Be-
cause there was no previous coordination among centers regarding
scanning parameters, each of these parameters could contribute to
across-center differences. Specific examination of these factors is
beyond the scopeof thepresentwork,butweanticipate that itwill be
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the focus of future studies. Fortunately, as demonstrated by our
analyses, these sources of variation did not preclude us from being
able to effectively pool data and carry out discovery-based analyses.

Effect of Sample Size on the Relationship Between RSFC and Age.We
investigated the effect of sample size on the strength of the corre-
lation betweenRSFCand age in two regions identified by our group
analyses. For this purpose, we randomly sampled participants from
the entire study sample using subgroups of 10–1,090 individuals (of
the total 1,093 participants), then calculated the correlation be-

tween age and connectivity strength for each subgroup. We re-
peated this procedure 10,000 times to optimize randomization.
Finally, we calculated the mean correlation and SD across the
10,000 iterations. As shown inFig. S6, the variability in the observed
correlation naturally decreased as a function of sample size, with a
tipping point observed when samples exceeded ∼100–200 partic-
ipants. This suggests that results obtained with sample sizes that
have been presumed to be sufficient (e.g., 50 participants) are likely
to lead to false-negative results for small effects.
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Fig. S1. Center-, age-, and sex-related variations detected in R-fMRI measures of functional connectivity using seed-based correlation analyses. The first
column depicts group-level functional connectivity maps for three representative “default mode” seeds (A) and three “task-positive” network seeds (B). The
seed ROIs are shown as white circles. The second column depicts voxels exhibiting significant effects of center, as detected by one-way ANOVA (across 24
centers, including 1,093 participants). Columns 3 and 4 depict voxels exhibiting age- and sex-related variations (modeled as covariates). Center, sex, and age
findings were corrected for multiple comparisons (Z > 2.3; P < 0.05, corrected). All supplementary cortical surface maps are arrayed as shown in Fig. 1, with
lateral views in upper rows, medial views in lower rows, left hemisphere on the left, and right hemisphere on the right. “Male” refers to significantly greater
connectivity in males; similarly, “female” refers to significantly greater connectivity in females. “Older” refers to significantly increasing connectivity with
increasing age, whereas “younger” refers to significantly increasing connectivity with decreasing age. “Pos”, positive functional connectivity; “neg”, negative
functional connectivity.
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Fig. S2. Center-, age-, and sex-related differences detected in R-fMRI measures of functional connectivity combining independent component and dual re-
gression analyses. The first column depicts group-level maps for 20 functional connectivity ICs. For each component, the second column depicts voxels ex-
hibiting significant effects of center, as detected by one-way ANOVA (across 24 centers, including 1,093 participants). Columns 3 and 4 depict voxels exhibiting
age- and sex-related variations. Center, age and sex findings were corrected for multiple comparisons (Z > 2.3; P < 0.05, corrected). “Male” refers to sig-
nificantly greater connectivity in males; similarly, “female” refers to significantly greater connectivity in females. “Older” refers to significantly increasing
connectivity with increasing age, whereas “younger” refers to significantly increasing connectivity with decreasing age. “Pos,” positive group effect: “neg,”
negative group effect.
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Fig. S3. IC templates used for dual regression analyses. Independent component maps resulting from the meta-ICA analysis shown on standard brain views (A)
and surface maps (B). Component maps were thresholded at P > 0.05 using spatial mixture modeling. Peak coordinates of each IC’s activity are displayed in the
lower right corner of each grid panel (MNI152 standard space).
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Fig. S4. Consistency of R-fMRI measures across centers: ICA combined with dual regression (A), and seed-based correlation (B). For each center, the vox-
elwise mean and coefficient of variation was calculated for each R-fMRI measure. The Kendall’s W concordance of the mean or coefficient of variation maps
between any two centers was calculated. The coefficient of variation is depicted above the diagonal, the mean below.

Biswal et al. www.pnas.org/cgi/content/short/0911855107 7 of 10

www.pnas.org/cgi/content/short/0911855107


Fig. S5. Functional connectivity values observed at peak locations of between-center differences. For each center we calculated the mean across a 3 mm
radius sphere centered at each of the 40 most significant voxels indexing the effect of center for the PCC seed ROI (Fig. 1, column 1, row 3). Connectivity values
indexed the functional connectivity between the 3 mm radius sphere and the PCC seed ROI. All centers included in the analyses are shown (n = 24). Although
the strength of functional connectivity values observed across centers clearly varies, the within-center variability is relatively low. This indicates that the
differences in functional connectivity strength among centers are relatively stable across the brain. A center that shows higher functional connectivity in one
area of the brain compared with another center most likely also shows higher functional connectivity in other areas of the brain.
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Fig. S6. Effect of sample size on the correlation between age and RSFC. Shown is the mean correlation ± 2 SD across 10,000 calculations of the correlation
between age and functional connectivity strength as a function of sample size. For each of the two regions illustrating the effect of age for the PCC seed ROI in
Fig. 2, we calculated the correlation between age and RSFC as a function of sample size. We randomly sampled subgroups, ranging in size from 10 to 1,090
participants, from the total of 1,093 participants. We then calculated the correlation between age and RSFC for each of the subgroups. This procedure was
iterated 10,000 times to optimize randomization. (A) Mean correlation ± 2 times the SD across 10,000 iterations for the region illustrated in Fig. 2 that showed
a positive correlation between age and RSFC with the PCC seed. (B) Mean correlation ± 2 times the SD across the 10,000 iterations for the region illustrated in
Fig. 2 that showed a negative correlation between age and RSFC with the PCC seed. In each figure, the actually observed correlation is indicated on the y-axis in
a smaller font.

Fig. S7. Center-, age-, and sex-related variations in R-fMRI amplitude measures. The first column depicts group-level maps for voxelwise measures of ALFF
(Upper) and fALFF (Lower). Before group-level analyses, each participant’s ALFF/fALFF map is Z-transformed, such that positive voxels reflect greater low-
frequency fluctuation amplitudes than baseline (whole brain mean) and negative voxels reflect low-frequency fluctuation amplitudes below baseline. The
second column depicts voxels exhibiting significant effects of center, as detected by one-way ANOVA (across 24 centers, including 1,093 participants). Columns
3 and 4 depict voxels exhibiting age- and sex-related variations. Center, age, and sex findings were corrected for multiple comparisons (Z > 2.3; P < 0.05,
corrected). “Male” refers to significantly greater connectivity in males; similarly, “female” refers to significantly greater connectivity in females. “Older” refers
to significantly increasing connectivity with increasing age, whereas “younger” refers to significantly increasing connectivity with decreasing age.
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Table S1. Data currently included in the 1,000 Functional Connectomes Project

Center PI N n*
Age

years, mean (SD)
Age range

years
Male sex

%

1. Baltimore, MD J. J. Pekar/S. H. Mostofsky 23 29.26 (5.46) 20–40 35%
2. Bangor, UK S. Colcombe 20 23.4 (5.32) 19–38 100%
3. Beijing, China YF. Zang 198 193 21.16 (1.83) 18–26 39%
4. Beijing, China XC. Weng 28 27 20.41 (1.39) 18–24 27%
5. Berlin, Germany D. Margulies 26 29.77 (5.21) 23–44 50%
6. Bethesda, MD M. Ernst 18 33.00 (13.31) 18–53 22%
7. Cambridge, MA R. L. Buckner 198 21.03 (2.31) 18–30 38%
8. Cambridge, MA S. Whitfield-Gabrieli 39 35 25.09 (3.53) 20–32 49%
9. Cleveland, OH M. J. Lowe 31 43.55 (11.14) 24–60 35%
10. Dallas, TX B. Rypma 24 42.63 (20.07) 20–71 50%
11. Hvidovre, Denmark A.-M. Dogonowski/K. Madsen 28 41.75 (10.7) 21–68 50%
12. Leiden, The Netherlands S. A. R. B. Rombouts 31 22.19 (2.57) 18–28 74%
13. Leipzig, Germany A. Villringer 37 26.22 (5) 20–42 43%
14. Magdeburg, Germany M. Walter 29 28 30.43 (5.71) 22–43 93%
15. Milwaukee, WI SJ. Li 64 53.59 (5.79) 44–65 64%
16. New Haven, CT M. Hampson 19 18 31.61 (10.27) 18–48 56%
17. New York, NY

†

M. Milham/F. X. Castellanos 59 32.78 (8.83) 20–49 68%
18. New York, NY

†

M. Milham/F. X. Castellanos 20 29.75 (9.94) 18–46 40%
19. Newark, NJ B. B. Biswal 19 24.11 (3.91) 21–39 47%
20. Orangeburg, NY

‡

M. J. Hoptman 21 20 40.65 (11.03) 20–55 75%
21. Oulu, Finland

‡

V. J. Kiviniemi/J Veijola 103 21.52 (0.57) 20–23 36%
22. Oxford, UK S. M. Smith/C. Mackay 22 29 (3.79) 20–35 55%
23. Queensland, Australia K. McMahon 19 18 26.28 (3.71) 20–34 61%
24. St. Louis, MO B. L. Schlaggar/S. E. Petersen 31 25.1 (2.31) 21–29 45%

Data from the following centers will be included in the 1000 Functional Connectomes data release but are not included in the
current analyses: Ann Arbor, MI: C. S. Monk/R. D. Seidler/S. J. Peltier; Atlanta, GA: H. S. Mayberg; Berlin, Germany: S. Schmidt; Durham,
NC: D. J. Madden; Durham, NC: L. Wang; London, Ontario, Canada: P. Williamson; Munich, Germany, C. Sorg/V. Riedl; Nanjing, China:
GJ. Teng/HY. Zhang; Pittsburgh, PA: G.J. Siegle; Portland, OR: D. Fair/B. J. Nagel; Taipei, Taiwan: CP. Lin; Vienna, Austria: C. Wind-
ischberger.
*Actual number of participants included in the analysis, if different from N.
†Data from the same magnet, different sequence.
‡1.5-T magnet.

Funding sources for each contributor (numbered by site): 1: R01 MH085328, R01 MH078160, HD-24061 (Intellectual Disabilities
Research Center), M01 RR00052 (Johns Hopkins General Clinical Research Center) and P41 RR15241 (National Center for Research
Resources); 3: NSFC (No.30621130074); 4: Chinese Ministry of Science and Technology (No. 2007CB512300); 5: Berlin School of Mind and
Brain (DFG); 7: Howard Hughes Medical Institute; 9: National Multiple Sclerosis Society; 13: Competence Net Stroke (BMBF) and Berlin
School of Mind and Brain (DFG); 17-18: NIDA (RO1DA016979), NIMH (RO1MH083246), Stavros Niarchos Foundation; 19: NINDS
(RO1NS049176); 20: R01 MH064783, R21 MH084031, R01 MH0663674; 21: Academy of Finland (Grant codes 124257, 212181,
214273); 23: Australian Research Council (ARC) Discovery grant (DP0452264); 24: NIH NS053425; Atlanta, G.A.: H.S. Mayberg: URC
Grant, Emory University; Durham, NC: D.J. Madden: NIH/NIA R01 AG011622; Durham, NC: L. Wang: Paul B. Beeson Career Develop-
mental Awards (K23-AG028982); Portland, OR: D. Fair/B. Nagel: Oregon Clinical and Translational Research Institute, Medical Research
Foundation, UNCF-Merck, Ford Foundation, Dana Foundation; Taipei, Taiwan: C-P. Lin: National Health Research Institute grant (NHRI-
EX98-9813EC), Taiwan; Vienna, Austria: C. Windischberger: OeNB-P11468 and OeNB-P12982.
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